

Transatlantic Partnerships for Hybrid Electro-Optic Modulation

Lewis E. Johnson, Ph.D.

Chief Scientific Officer

 $\mathsf{OCTOBER} 3, 2023$

NLM Photonics in Brief

W UNIVERSITY of WASHINGTON

Materials Development

Top team and key patents developed out of 25+ year legacy of world-leading organic electro-optic (OEO) research at the University of Washington

Partnerships

Extensive collaborations with leading translational research fabs, industry partners, startups, and academia

 $\overline{}$

MATERIALS

PROCESSES

DEVICE TECHNOLOGY

Process Technology

Unique technologies for high performance and stability optimized for hybrid EO devices and backed by years of processing and deployment experience

Ubiquitous computing and AI require enormous bandwidth and power

The critical role of electro-optic modulation

Upper left: submarinecablemap.com Upper right: Appl. Phys. Lett. 118, 220501 (2021)

What do we want out of integrated modulators?

- Scalable bandwidth can deliver 100+ GHz for 200G and 400G per λ
- Power efficient low drive voltage, low capacitance, high extinction ratio
- Clean, low-chirp modulation
- Low optical loss
- Linear drive capable
- Good compatibility with existing PIC manufacturing processes
- Thermally stable, can last for lifetime of hardware even under demanding conditions

Hybrid Organic Technology can deliver.

High-performance Materials

Optimized Device Architectures

Robust Stability

L. R. Dalton, et. al. APL Materials 2023, doi: 10.1063/5.0145212 C. Kieninger et al. *Optica* **2018**, doi: 10.1364/OPTICA.5.000739 M. Burla et al. *APL Photonics* **2019**, 4. doi:10.1063/1.5086868 S. R. Hammond et al, *Proc. SPIE* **2022**, doi: 10.1117/12.2622099

6

Factors influencing modulation efficiency

How did we get here? Transatlantic Partnerships

...and commercialization...

...and growth

(not exhaustive)

Developing better OEO materials

A. F. Tillack and B. Robinson, JOSA B 2016, doi: 10.1364/josab.33.00e121 W. Heni et al. ACS Photonics 2017, doi: 10.1364/oe.25.002627 H. Xu et al. Chemistry of Materials 2020, doi:10.1021/acs.chemmater.9b03725 L. E. Johnson, et al. Proc. SPIE 2021, doi: 10.1117/12.2594939 L. E. Johnson, et al. Proc. SPIE 2021, doi: 10.1117/12.2595638 H. Xu, et al. et al. Materials Horizons 2021, doi: 10.1039/d1mh01206a

2.5

2

0.35

0.3

0.25

0.15

0.1

0.05

102

7 8

cos3> 0.2

Higher hyperpolarizability

Understanding interfacial effects

UNIVERSITY of

WASHINGTON

1.6

1.4

0.4

0.2

0 1 2 3 4 5 6

Protecting group radius [Ångström]

<1.2 1.2 0.8 0.6

Performance comes from...

Higher chromophore concentration

Silicon Organic Hybrid (SOH) technology

- High compatibility with existing silicon photonics processes
 - No complex epitaxy or ion etch
 - Noble metal free
 - Accessible critical dimensions ~ 100 nm
- Slot waveguide based designs utilizing large Pockels response
 - MZIs with $V_{\pi}L \simeq 500 \text{ V-}\mu\text{m}$
 - Athermal resonant modulators
- Facile OEO integration:
 - Oxide trench etch
 - Solution-processed advanced packaging step
 - Localized on-chip encapsulation
- Competitive device performance:
 - $V_{\pi} < 1 V$ possible
 - Insertion loss < 1 dB/phaseshifter demonstrated
 - Bandwidth up to 60-100 GHz demonstrated, higher possible

Photo: Gerard Zytnicki

C. Kieninger et al. *Optics Express* **2020**. doi:10.1364/oe.390315 C. Kieninger et al. *Optica* **2018**, doi: 10.1364/OPTICA.5.000739

Plasmonic-Organic Hybrid (POH) technology

High-efficiency microscale POH ring resonator (1)

500+ GHz POH MZI (3)

sub-100 aJ/bit IQ modulator (5)

Advantages of POH technology:

Ultra-small V_{π}L (< 50 V- μ m)

- Tight confinement + effective index of plasmonic mode
- Can be further improved with higher-performance materials

A Electronic PMUX B Plasmonic MZMs

60 GHz, sub-mm plasmonic mixer/antenna (2)

Commercial prototype 110+ GHz POH modulator from Polariton (4)

Integrated POH-BiCMOS transmitter (6)

Ultra-large bandwidth (> 500GHz)

- Flat frequency response
- SFDR competitive with III-V based solutions

Crosslinked materials can survive space-relevant conditions

1) C. Haffner et al., Low-loss plasmon-assisted electro-optic modulator. Nature 2017, 556, 483-486.

2) Y. Salamin et al. Microwave plasmonic mixer in a transparent fibre–wireless link. *Nature Photonics* 2018, 12, 749-753. doi:10.1038/s41566-018-0281-6
3) M. Burla et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. *APL Photonics* 2019, 4. doi:10.1063/1.5086868
4) http://www.polariton.ch

5) W. Heni et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nature Communications 2019, 10. doi:10.1038/s41467-019-09724-7

6) U. Koch et al. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nature Electronics 2020. doi:10.1038/s41928-020-0417-9

Engineering for thermal stability

Data from S. R. Hammond et al, *Proc. SPIE* **2022**, doi: 10.1117/12.2622099 Upper right: U. Koch et al.. *Nature Electronics* **2020**. doi:10.1038/s41928-020-0417-9

14

Monolithic integration can get hot!

- 82-124°C at MZIs!
- Historical Challenge hard to get high EO performance and high temperature stability
- Multiple approaches (high T_g thermoplastics, crosslinked thermoset plastics) have demonstrated > 85°C long-term stability
- NLM approach binary crosslinked organic glasses form polymers in-situ during processing, projected > 11 year t₈₀ at 120°C for HLD after initial burn-in, in absence of water or oxygen
- Operation demonstrated in devices using HLD at 120°C

Fab process development

Slot waveguides and oxide open

OEO infill

Data from Dr. Yohan Désières (CEA-LETI) and team 100 and 200 nm slot waveguides fabricated on 300nm line Initial demo on passive devices

Optical loss measurements

Slot width =100nm Slot width = 200nm HLD infilling

Optical rectification-based detection

What's next?

New device architectures and additional platforms (SiN, III-V semiconductors)

THz antenna PPS MZI Ins.THE THZ

I.-C. Benea-Chelmus et al, Nat. Commun. **2021,** doi: 10.1038/s41467-021-26035-y Y. Salamin, et. al. Nat. Commun. 2019, doi: 10.1038/s41467-019-13490-x

16

Wafer-scale deterministic assembly (sequential synthesis)

Acknowledgements

NLM Photonics

Dr. Delwin Elder

Dir. Materials Development

Dr. Scott Hammond **Dir. Process Development**

Dr. Stephanie Benight VP Strategic Partnerships

Dr. Kevin O'Malley

Senior Research Scientist

Other Contributors:

University of Washington

- Prof. Bruce Robinson
- Prof. Larry Dalton
- Dr. Huajun Xu
- Dr. Andreas Tillack

Polariton Technologies AG

- Dr. Wolfgang Heni
- Dr. Claudia Hoessbacher

KIT (+ SilOriX)

- Prof. Christian Koos
- Dr. Adrian Schwarzenberger

Leuthold group (ETH-Zurich)

- Prof. Jureg Leuthold •
- Dr. David Moor •

Clays group (KU-Leuven)

- Prof. Koen Clays
- Dr. Yovan de Coene
- Dr. Yohan Desires (CEA-LETI)

Dr. Christian Haffner (imec)

Prof. Ileana-Cristina Benea-Chelmus (EPFL)

Funding and facilities:

Thanks!

NLM Photonics Team

University of Washington

Robinson/Dalton group in 2019